Density and Concentration

How much "stuff"
crammed into
how much space?

Usually used for solid and gas

How much "stuff"

$\frac{\mathrm{g}}{\mathrm{mL}}$ $\frac{\mathrm{g}}{\mathrm{cm}^{3}}$ volume

REMEMBER: $1 \mathrm{~mL}=1 \mathrm{~cm}^{\mathbf{3}}$
Etc...

Which one is more dense?

Which one is more dense?

$\because: 9$

Iry these...

1) Jack has a rock. The rock has a density of $6.73 \mathrm{~g} / \mathrm{mL}$ and a volume of $8 \mathrm{~cm}^{3}$. What is the mass of the rock? ($1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$)
2) What is the volume of an object if the density is $1.45 \mathrm{~g} / \mathrm{mL}$ and it has a mass of 15.2 grams?
3) What is the density of a block if it has the following dimensions and it weighs 45.8 g ? 12 cm long, 3 cm tall, and 6.5 cm wide

Concentration Usually for solutions

We are only going to use MOLARITY as our concentration unit

How much "stuff"
crammed into
"per"
How much space
liter
moles
L

You can also just use a capital M

Try these...

1) If you have 1.3 moles of NaCl dissolved in 4 L of water, what is the molarity?
2) What is the concentration of a solution if 0.45 moles are dissolved in 300 mL ?
3) If you have 15 grams of NaOH in 630 mL of water, what is the concentration?

GROUP \#	PRE-1982 \% error	POST-1982 \% error
1		
2		
3		
4		
5		
6		
7		
8		

