MEASUREMENT ACTIVITY

Pre-Activity Questions

You must complete these questions as homework in order to participate in the activity

In Class Tasks

You will be graded on how well you follow the instructions, showing your work for any and all math calculations, including UNITS on your measurements, in your work, and on your final answer, as well as

cleaning up the lab supplies and equipment when finished. If you have questions it is your responsibility to ask

Task \#1
 Use the pipette to add 25 drops of water to the graduated cylinder. Make sure to read the cylinder

 from eye level when taking your measurement.
Record the measurement in mL

Convert to Liters. Show your work.

Task \#3

Fill the beaker with tap water. Measure the temperature. Make sure to wait a few minutes for the thermometer to accurately read the temp.

Record the temperature in Celsius.

Convert to Kelvin. Show your work.

Task \#5

Measure the length of the string.
Record your answer in cm.

Convert to m. Show your work.
Convert to mg. Show your work.

Task \#4

Have a partner say their ABCs out loud and record how long it takes to do so

Record the time it takes to say them in seconds.

Convert to milliseconds. Show your work

Task \#6

Calculate the density of the metal cube in $\mathrm{g} / \mathrm{cm}^{3}$
Record all the measurements taken.

Task\#1

Measure the volume of the irregularly shaped object.
What technique did you use to accomplish this?

Record any measurements you needed to do this.

Show your calculations and find your final answer.

Show your calculations and find your final answer.

Task \#9-A

 from 10 mL to 13 mL .Record the number of drops it takes you to do so. numbers you already have for Task 9.

Show how you calculated this number.

Task \#8

Measure the mass of 30 mL of water. Use the "weigh boat" to help you. Dry it when done. Don't forget to use the zero function of the scale before you start measuring.

Record your answer in grams.

Convert to kg. Show your work.

Look up the density of water. Write it down here.

Fill the graduated cylinder to 10 mL . Add DROPS to the graduated cylinder using the pipette to raise the volume

Using that number and your volume measurements on the graduated cylinder, calculate the number of "drops per mL" or "drops/1mL." You are NOT counting how many drops per mL, you are calculating it based of the

Looking Forward - This is a "sneak peek" at what we will be working on next. Watch the video and take enough notes so that I believe you actually watched it and learned from it θ https://tinyurl.com/mtcaj3b

