START - Scientific Notation and Metric System

Measurements and Conversions Gone Wrong!

Measurements and Conversions Gone Wrong!

1999
NASA lost a Mars orbiter - \$125 million loss. A calculation was done with poundforce seconds, not Newton seconds.

Measurements and Conversions Gone Wrong!

1983 - Air

Canada plane ran out of fuel in the air. They thought the fuel was weighed in
 kilograms, but it was weighed in pounds.

Measurements and Conversions Gone Wrong!

1492 Columbus ended up in Bahama's not Asia. Measured in Roman miles not Nautical miles.

Measurements and Conversions Gone Wrong!

$\underline{2004}$
Tokyo Disneyland's Space Mountain Accident. The building designs changed from
 inches to metric scale. An axle got made thinner than it should have been.

Measurements and Conversions Gone Wrong!

2001
LA Zoo loans Clarence to another zoo. Clarence destroys the enclosure. They thought he was 2501 lbs but it was 250 kg ! 250 kg is bigger than 250lbs!

Why the Metric System?

-We all need to speak the same "math language."
-Everyone else uses it!

- It is easier!

How is it easier?

- Metric system works on "BASE TEN"
- Everything is changed by a factor of 10
- English system is total random!

Unit	Compared to "base" unit of a meter
Meter	1
Decameter	10
Hectometer	100
Kilometer	1000

Converting Merric System

- Just move the decimal!

To convert to a smaller unit, move decimal point to the right (or multiply)

What are the "Base Units?"

How do I remember the prefixes?

King						Henry
Died	By	Drinking	Chocolate	Milk		
\mathbf{K}	\mathbf{H}	\mathbf{D}	\mathbf{B}	\mathbf{D}	\mathbf{C}	\mathbf{M}
\mathbf{I}	\mathbf{E}	\mathbf{E}	\mathbf{a}	\mathbf{E}	\mathbf{E}	\mathbf{I}
\mathbf{L}	\mathbf{C}	\mathbf{K}	\mathbf{s}	\mathbf{C}	\mathbf{N}	\mathbf{L}
\mathbf{O}	\mathbf{T}	\mathbf{A}	\mathbf{e}	\mathbf{I}	\mathbf{T}	\mathbf{L}
	\mathbf{O}				\mathbf{I}	\mathbf{I}

Guided Practice
 $27500 \mathrm{mg} \rightarrow \mathrm{g}$

STEP 1

Are you going up or down the "ladder?"

STEP 2

How many steps to get there?

K H D

B d c m

STEP 3
Move decimal that many times, in that direction

$$
\begin{gathered}
275000 \\
\text { UUU } \\
27.500 \mathrm{~g}
\end{gathered}
$$

Guided Practice
 $0.15 \mathrm{DL}=$
 mL

STEP 1

Are you going up or down the "ladder?"
STEP 2

How many steps to get there?

K H D B d c m

STEP 3

Move decimal that many times, in that direction

0.1500

 UUUV
1500 mL

Tired of really hig or really small

 numbers???- Use scientific notation!
- Move your decimal and rewrite it in "scientific notation format"
$3-54 \times 10^{2}$
(tells us how many times to move the decimal, and which way to move it!)

Exponent

Big or small?

x 10 positive \# \quad "Big" \# \quad Multiplying by 10's
 x 10 negative \# \quad "Small" \# \quad Dividing by 10's

Guilded Practice

1.0×10^{1}	10	2.5×10^{4}	25000
1.0×10^{0}	1	3.8×10^{-2}	0.038
1.0×10^{-1}	0.1		

Guided Practice	
541	5.41×10^{2}
9.5	9.5×10^{0}
0.025	2.5×10^{-2}

