START - Scientific Notation and Metric System

Target: I can perform

metric conversions and

use scientific notation

27500 mg → g

0.15 DL → mL

rt into Std. F 1.0 x 10¹

1.0 x 10°

1.0 x 10⁻¹

2.5 x 10⁴

3.8 x 10⁻²

541

9.5

#10 0.025

ert into Sci. N

C

Ο

3 • 54 × 10

Κ

Rest of

• the #s x 10 the

CONVERTING AND SCIENTIFIC NOTATION Show work on notebook paper! Convert: 1000mg → g 5) 80 cm → m 6) 75 mL → L
7) 5.6 m → cm 1L → mL 160cm → mm 4) 1.4 km → m 8) 65 g → mg Compare using <, >, or = 9) 7g ? 698mg 10) 1,500 mL ? 1.5 L 11) 536 cm ? 53.6 dm 12) 3.6 m ? 36cm Write the abbreviation for each metric unit and tell if it measures mass, length, or volume 13) decigram 14) milliliter meter 16) decameter Write in scientific notation: 17) 12 18) 0.156000 19) 0.0000000853 Write in standard notation 20) 1.98 x 104 21) 4.5 x 10⁻⁶ 22) 2.71 x 10° What is wrong with the following #s? 23) 0.54 x 10 24) 97 x 10⁻⁴ Why does this not make sense? Look at the number! 25) The diameter of a particular atom is 1.3 x 108 cm. Solve the following word problems: 26) In Australia, the people use approximately 2,240,000,000 pounds of bread in a year. Put in scientific 27) 0.000065 is the wave length of yellow light. Put in scientific notation. 28) A proton weighs 1.673 x 10⁻²⁷ kg, a neutron weighs 1.75 x 10⁻²⁷ kg, and an electron weighs 9.11 x 10⁻³¹ kg. Write the heaviest particle's mass in standard notation.

Show your work here!

Be neat and organized so I can follow what you did and where the work for each question is.

<u>1999</u>

NASA lost a Mars orbiter - \$125 million loss. A calculation was done with *poundforce seconds*, not *Newton seconds*.

1983 – Air **Canada plane** ran out of fuel in the air. They thought the fuel was weighed in kilograms, but it was weighed in *pounds*.

<u>1492</u> Columbus ended up in Bahama's not Asia. Measured in *Roman miles* not *Nautical miles*.

<u>2004</u>

Tokyo Disneyland's Space Mountain Accident. The building designs changed from inches to metric scale. An axle got made thinner than it should have been.

2001 LA Zoo loans **Clarence to** another zoo. **Clarence destroys** the enclosure. They thought he was 250lbs but it was 250 kg! 250kg is bigger than 250lbs!

Why the Metric System?

- We all need to speak the same "math language."
- Everyone else uses it!
- It is easier!

How is it easier?

- Metric system works on "BASE TEN"
- Everything is changed by a factor of 10
- English system is total random!

Unit	Compared to "base" unit of a meter
Meter	1
Decameter	10
Hectometer	100
Kilometer	1000

Converting Metric System

• Just move the decimal!

How do I remember the prefixes?

King Henry Died By Drinking Chocolate Milk C Κ B Μ Η D D Ι E E E E Ι a L С K C Ν L S Τ 0 A T T L e 0 Ι T

<u>**Guided Practice</u>** 27500 mg \rightarrow g</u>

<u>STEP 1</u>

Are you going up or down the "ladder?"

<u>STEP 2</u>

How many steps to get there?

<u>STEP 3</u>

Move decimal that many times, in that direction

K H D B d c m 2750027.500 g

Guided Practice

0.15 DL =

ΚΗ

mL

DBdcm

STEP 1

Are you going up or down the "ladder?"

STEP 2

How many steps to get there?

STEP 3

Move decimal that many times, in that direction

0.1500しましたした

1500 mL

<u>Tired of really big or really small</u> <u>numbers???</u>

- Use scientific notation!
- Move your decimal and rewrite it in "scientific notation format"

Big or small?				
x 10 ^{positive #}	"Big" #	Multiplying by 10's		
x 10 ^{negative #}	"Small" #	Dividing by 10's		

Guided Practice				
1.0 x 10 ¹	10	2.5 x 10 ⁴	25000	
1.0×10^{0}	1	3.8 x 10 ⁻²	0.038	
1.0 x 10 ⁻¹	0.1			

Guided Practice		
541	5.41 x 10 ²	
9.5	9.5 x 10 ⁰	
0.025	2.5 x 10 ⁻²	