THE "MOLE" AND "Molar Mass"

ATOMS ARE REALLY SMALL!!

- We can't work with individual atoms in the LAB
- Because we can't see things that small

So let's count a WHOLE BUNCH all at once!

A NEW UNIT OF MEASURMENT

 THE MOLE
6.02×10^{23}

- A counting unit
- Like a "dozen" but really, really big!

The Mole

Don't need to write down what's in the orange boxes

- Similar to a dozen, except instead of 12, it's 602 billion trillion

602,000,000,000,000,000,000,000

Avogadro's Number

Amedeo Avogadro 1776-1856

Decided that:

6.02×10^{23}
molecules per mole

Just How Big is a Mole?

- Soda cans to cover the surface of the earth over 200 miles deep.
- Avogadro's number of unpopped popcorn kernels spread across the USA...over 9 miles deep.
- Count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.

A Mole of "Particles" Particles is a generic term

ATOMS $\rightarrow 1$ mole C MOLECULES $\rightarrow \mathbf{1}$ mole $\mathrm{H}_{2} \mathrm{O}$
COMPOUNDS $\rightarrow 1$ mole CaCl_{2} IONS $\rightarrow \mathbf{N H}_{4}{ }^{+}$

1 mole $_{2}{ }_{2} \underline{O}$

1 mole molecules
2 moles H atoms
1 mole O atoms

The Mole is a Unit Song

https://www.youtube.com/watch?v=1R7Nilum2TI

COUNTING VERSUS WEIGHING!

- 1 dozen donuts $=12$ donuts
- 1 mole of donuts $=6.02 \times 10^{23}$ donuts
- 1 dozen Al atoms $=12 \mathrm{Al}$ atoms
- 1 mole of Al atoms $=6.02 \times 10^{23}$ atoms

The NUMBER in a mole is always the same, but the MASS is very different!

TINY TINY TINY!!!! - USE A SPECIAL UNIT:

Atomic mass unit = "amu" $1 \mathrm{amu}=1.66 \times 10^{-24}$ grams

1 atom of $\mathrm{H}=1.66 \times 10^{-24} \mathrm{~g}=$
1 atom of $\mathrm{C}=1.99 \times 10^{-23} \mathrm{~g}=$
1 atom of $0=2.656 \times 10^{-23} \mathrm{~g}=$

Molar Mass How many GRAMS PER MOLE? LOOK ON THE PERIODIC TABLE!

How much does a mole of something weigh???
1 mole of C atoms $=12.0 \mathrm{~g}$
1 mole of Mg atoms $=24.3 \mathrm{~g}$
1 mole of Cu atoms $=63.5 \mathrm{~g}$

THE CONVERSION FACTOR VERSION! Molar Mass of $\mathrm{C}=12.01 \mathrm{~g} / \mathrm{mol}$ Molar Mass of $\mathbf{M g}=24.3 \mathrm{~g} / \mathrm{mol}$ Like saying 12in/ft

Learning Check!

Find the molar mass

1) $\mathrm{Br}=79.9 \mathrm{~g} / \mathrm{mole}$ 2) $\mathrm{Sn}=118.7 \mathrm{~g} / \mathrm{mole}$

Molar Mass of Molecules a compounds

Add up the mass for each part of the molecule 1 mole of $\mathrm{CaCl}_{2}=\mathbf{1 C a}+2 \mathrm{Cl}$ $\mathrm{Ca}=40.1 \mathrm{~g} / \mathrm{mol} \quad \mathrm{Cl}=35.5 \mathrm{~g} / \mathrm{mol}$ $1 \mathrm{Ca}+2 \mathrm{Cl}=$ $40.1+35.5+35.5=111.1 \mathrm{~g} / \mathrm{mol}$

Molar Mass of Molecules a compounds

Molar Mass of $\mathrm{N}_{2} \mathrm{O}_{4}=$?
$\mathrm{N}=14.0 \mathrm{~g} / \mathrm{mol} \quad \mathrm{O}=16.0 \mathrm{~g} / \mathrm{mol}$
$2 \mathrm{~N}+4 \mathrm{O}=$
$\left(2^{*} 14.0\right)+\left(4^{*} 16.0\right)=92 \mathrm{~g} / \mathrm{mol}$

Molar Mass of Molecules \& compounds

Molar Mass of antacid $\mathrm{Al}(\mathrm{OH})_{3}=$?
$\mathbf{1 A l}+3 \mathbf{O}+\mathbf{3 H}$
$\mathrm{Al}=27.0 \mathrm{~g} / \mathrm{mol} \mathrm{O}=16 \mathrm{~g} / \mathrm{mol} \mathrm{H}=1.0 \mathrm{~g} / \mathrm{mol}$
$\left(1^{*} 27.0 \mathrm{~g} / \mathrm{mol}\right)+\left(3^{*} 16.0 \mathrm{~g} / \mathrm{mol}\right)+\left(3^{*} 1.0\right)=78 \mathrm{~g} / \mathrm{mol}$

