Charles's Law

1) If I have 45 liters of helium in a balloon at $25^{\circ} \mathrm{C}$ and increase the temperature of the balloon to $55^{\circ} \mathrm{C}$, what will the new volume of the balloon be?
2) Calcium carbonate decomposes at $1200^{\circ} \mathrm{C}$ to form carbon dioxide and calcium oxide. If 25 liters of carbon dioxide are collected at $1200^{\circ} \mathrm{C}$, what will the volume of this gas be after it cools to $25^{\circ} \mathrm{C}$?
3) I have 130 liters of gas in a piston at a temperature of $250^{\circ} \mathrm{C}$. If I cool the gas until the volume decreases to 85 liters, what will temperature of the gas be?

Charles's Law - Solutions

1) If I have 45 liters of helium in a balloon at $25^{\circ} \mathrm{C}$ and increase the temperature of the balloon to $55^{\circ} \mathrm{C}$, what will the new volume of the balloon be?

$$
\begin{aligned}
& \frac{45 L}{298 K}=\frac{x}{328 K} \\
& x=50 L
\end{aligned}
$$

2) Calcium carbonate decomposes at $1200^{\circ} \mathrm{C}$ to form carbon dioxide and calcium oxide. If 25 liters of carbon dioxide are collected at $1200^{\circ} \mathrm{C}$, what will the volume of this gas be after it cools to $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \frac{25 L}{1473 K}=\frac{x}{298 K} \\
& x=5.1 L
\end{aligned}
$$

3) I have 130 liters of gas in a piston at a temperature of $250^{\circ} \mathrm{C}$. If I cool the gas until the volume decreases to 85 liters, what will temperature of the gas be?

$$
\begin{aligned}
& \frac{130 L}{523 K}=\frac{85 L}{x} \\
& x=340 K \\
& x=69^{\circ} \mathrm{C}
\end{aligned}
$$

