Name:

Date:

Stoichiometry Worksheet #1 Answers

1. Given the following equation: $2 C_4 H_{10} + 13 O_2 - --> 8 CO_2 + 10 H_2O$, show what the following molar ratios should be.

a. C₄H₁₀ / O₂
b. O₂ / CO₂
c. O₂ / H₂O
d. C₄H₁₀ / CO₂
e. C₄H₁₀ / H₂O

2. Given the following equation: $2 \text{ KClO}_3 \longrightarrow 2 \text{ KCl} + 3 \text{ O}_2$

a. How many moles of O₂ can be produced by letting 12.00 moles of KClO₃ react?

18.0 mol O₂

3. Given the following equation: $2 \text{ K} + \text{Cl}_2 \longrightarrow 2 \text{ KCl}$

a. How many grams of KCl is produced from 2.50 g of K and excess Cl₂?

4.77 g KCl

b. How many grams of KCl is produced from 1.00 g of Cl₂ and excess K?

2.10 g KCl

4. Given the following equation: $Na_2O + H_2O ---> 2 NaOH$

a. How many grams of NaOH is produced from 1.20×10^2 grams of Na₂O?

154.8 g NaOH

b How many grams of Na₂O are required to produce 1.60 x 10² grams of NaOH?

124 g Na₂O

- 5. Given the following equation: 8 Fe + $S_8 \rightarrow 8$ FeS
 - a. What mass of iron is needed to react with 16.0 grams of sulfur?

27.87 g Fe

b. How many grams of FeS are produced?

43.9 g FeS

6. Given the following equation: $2 \text{ NaClO}_3 \longrightarrow 2 \text{ NaCl} + 3 \text{ O}_2$

a. 12.00 moles of NaClO₃ will produce how many grams of O₂?

576 g O₂

b. How many grams of NaCl are produced when 80.0 grams of O₂ are produced?

97.4 g NaCl

7. Given the following equation: $Cu + 2 \text{ AgNO}_3 ---> Cu(NO_3)_2 + 2 \text{ Ag}$

a. How many moles of Cu are needed to react with 3.50 moles of AgNO₃?

1.75 mol Cu

b. If 89.5 grams of Ag were produced, how many grams of Cu reacted?

26.4 g Cu

8. Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). The reaction is: $Fe_2O_3 + 3 C ---> 2 Fe + 3 CO$

a. If 25.0 kilograms of pure Fe₂O₃ is used, how many kilograms of iron can be produced?

17.49 kg Fe

9. The average human requires 120.0 grams of glucose ($C_6H_{12}O_6$) per day. The photosynthetic reaction is: 6 CO₂ + 6 H₂O ---> C₆H₁₂O₆ + 6 O₂

a. How many grams of CO_2 (in the photosynthesis reaction) are required for this amount of glucose?

175.8 g CO₂

This problem is slightly different from those above.

10. Given the reaction: $4 \text{ NH}_3 (g) + 5 \text{ O}_2 (g) ---> 4 \text{ NO} (g) + 6 \text{ H}_2 \text{O} (l)$

When 1.20 mole of ammonia reacts, the total number of moles of products formed is:

a. 1.20 b. 1.50 c. 1.80 d. 3.00 e. 12.0

d. 3.00