Unit 4 Benchmark \#3 - Stoichiometry - PRACTICE

Each question will be worth 4 points. You must show all of your work.
Put your answer in the space provided! No Work = No Credit!

1. A chemist uses hot hydrogen gas to convert chromium(III) oxide to pure chromium. How many moles of hydrogen are need to convert 5 moles of chromium(III) oxide, $\mathrm{Cr}_{2} \mathrm{O}_{3}$?

$$
\mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{Cr}+3 \mathrm{H}_{2} \mathrm{O}
$$

2. How many liters of oxygen, O_{2}, are required for the complete combustion of $1 / 2$ mole of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$ at standard conditions?

$$
\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

3. A chemist uses hot hydrogen gas to convert chromium(III) oxide to pure chromium. How many moles of hydrogen are need to convert 76 grams of chromium(III) oxide, $\mathrm{Cr}_{2} \mathrm{O}_{3}$?

$$
\mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{Cr}+3 \mathrm{H}_{2} \mathrm{O}
$$

4. Hydrogen can react explosively with oxygen to form water. How many liters of hydrogen are required to combine with 16 grams of oxygen at standard conditions?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

5. How many grams of calcium are required to free 4 moles of hydrogen gas from hydrochloric acid, HCl ?

$$
\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}
$$

___ grams
6. Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$ burns in oxygen. How many liters of water vapor, $\mathrm{H}_{2} \mathrm{O}$, are produced by the combustion of 20 moles of butane at standard conditions?

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

liters
7. How many liters of oxygen, at standard conditions, are needed to react with 90 grams of glucose, $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

8. How many grams of oxygen are required to produce 9 grams of water at standard conditions?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

