Name:
Period:

Conceptual Questions

1) Define Dalton's Law in your own words.	2) Different types of gases exert different pressures on their containers even if they have the same volume, temperature, and number of moles. True or False. Explain. 3) Write a generic equation for determining the pressure of a gas collected over water. 4) Convert 890 mm Hg to atm. (5)Convert the pressure of water vapor at 350K (in C from your table) into kPa.	

Mathematical Questions

- Show plugging in the variables to the correct places in the equation
- Get an actual answer, including units! Box your answer!
- Don't forget - you must show units and any conversions that might be involved.
- You can either rearrange your equation before you plug in your variables, or after. Do what works for you!
- If needed, use the Water Vapor Pressure Table from your Reference Sheet

6) A container holds three gases: oxygen, carbon dioxide, and helium. The partial pressures of the three gases are $2.00 \mathrm{~atm}, 3.00 \mathrm{~atm}$, and 4.00 atm , respectively. What is the total pressure inside the container? 9 atm
7) A gas mixture contains hydrogen, helium, neon and argon. The total pressure of the mixture is 93.6 kPa . The partial pressures of helium, neon and argon are $15.4 \mathrm{kPa}, 25.7$ kPa , and 35.6 kPa , respectively. What is the pressure extended by the hydrogen? 16.9 kPa

8) A mixture of 14.0 grams of hydrogen, 84.0 grams of nitrogen, and 2.00 moles of oxygen are placed in a flask. When the partial pressure of the oxygen is 78.00 mm of mercury, what is the total pressure in the flask? 465.27 mmHg
